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Background

The Foresight Briefs are published by the United Nations 
Environment Programme to highlight a hotspot of 
environmental change, feature an emerging science 
topic, or discuss a contemporary environmental issue. 
The public is provided with the opportunity to find out 
what is happening to their changing environment and the 
consequences of everyday choices, and to think about 
future directions for policy. The 25th edition enhances 
our understanding of the interwoven relationships and 
the subsequent fluxes of energy between plants, soils 
and water on the ground, as well as in and with the 
atmosphere. It explains how these can help mitigate 
climate change, while at the same time creating a 
resilient ecosystem.

Abstract

The continued destruction of forests, the deterioration of 
soils, the subsequent loss of terrestrial soil water storage 
and the reduction of water retention in the landscape 
are disrupting the movement of water in and through 
the atmosphere. This disruption causes major shifts in 
precipitation that could lead to less rainfall and more 
droughts in many areas of the world, increases in regional 
temperatures and an exacerbation of climate change. 
These changes affect regional climate, but can also 
impact regions far away. Understanding the interwoven 
relationships and the subsequent fluxes of energy 
between plants, soils and water on the ground, as well as 
in the atmosphere, can help mitigate climate change and 
create more resilient ecosystems.
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Introduction

Vegetation plays an important – and often neglected 
– role in regulating the climate. Think of the difference 
between standing on a hot summer afternoon on a 
ploughed and barren field or in a dense forest. Clearly, 
the conversion of, for example, forests to cropland or 
urban areas brings major changes that can influence the 
climate.

From the solar radiation reaching a densely vegetated 
field surface only 1% is used for photosynthesis and 
5-10% heats the air (“sensible heat”i). Over 70% of the 
radiation is used for transpiration by the plants, by which 
liquid water is transformed to water vapor, a very energy-
demanding process (“latent heat”i) (Figure 1). Counting 
non-vegetated and water surfaces, around 50% of the 

Figure 1: Distribution of the solar energy incident on vegetation.1 
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solar energy reaching the ground is used for evaporation 
and transpiration of water (“evapotranspiration”ii).1–4

As these masses of air rise into the atmosphere, the 
water vapor will eventually condensate and release the 
same amount of energy as consumed on the ground, 
some of it dissipating into space. The newly created 
clouds will reflect incoming solar radiation and are the 
source of new precipitation. 

___________________ 
i Latent and sensible heat are types of energy released or absorbed in the 

atmosphere. Latent heat is related to changes in phase between liquids, gases, 
and solids. Sensible heat is related to changes in temperature of a gas or object 
with no change in phase.  (https://climate.ncsu.edu/edu/Heat)

ii The combined processes of evaporation and transpiration of the water from 
the earth’s surface into the atmosphere.
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Key causal influences in this system - increased human 
land use has resulted in reduced vegetation cover, degraded 
soil and diminished water retention, which directly reduces 
evapotranspiration, increasing ground temperatures, in turn 
impacting global temperature rise. Increasing vegetation on 
land will increase soil fertility and ground water recharge, 
increasing evapotranspiration, in turn leading to increased 
cloud cover and increased rainfall. Increased cloud cover 
causes an increase in atmospheric cooling through additional 
reflectance of incoming solar radiation as well as an increase 
of energy transfer back into space, which together have 
regulatory effects on earths’ warming. When this balancing 
feedback is weakened, a hotter earth will result in more 
droughts, further worsened by reduced rainfall, and more 
vegetation fires which in turn warms the earth even further. 
These cycles can be reversed through policies that promotes 
land use that increases vegetation cover and improves soil 
water retention. (+) Influence is in the Same direction, (-) 
influence is in the Opposite direction. 

A Systems Thinking Perspective
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Why is this issue important?

Of the approximately 120,000 km3 of water that falls on 
terrestrial surfaces as precipitation each year, around 
60% comes from the ocean while 40% derive from land 
(see Figure 2).5,6 60-80% of this land-derived atmospheric 
moisture comes from transpiration by plants2,7,8, 
demonstrating the important role vegetation plays in 
feeding the precipitation cycle, as well as in transferring 
energy from the ground into the upper atmosphere. 

Figure 2: Global water flows. Out of the 120,000 km3 of rain, which falls onto the continents, 72,000 km3 originates from the ocean, and 48,000 km3 
stem from the land. Out of this, 60-80% comes from transpiration of plants and 20-40% from water bodies and soils. 32,000 km3 of land-based 
evapotranspiration goes back to the ocean via humidity in the air; 40,000 km3 are drained via rivers to the oceans.11

Until recently, human impact on water vapour in the 
atmosphere was assumed to be negligible, compared to 
evaporation from oceans. However, the impact humans 
have on atmospheric water vapour stems from major 
human-induced land cover changes, not only from 
industrial emissions, as previously argued. These land 
cover changes indeed have a major influence on the 
atmospheric water vapour cycles.9–11

Almost half of the world’s forests have been lost since the 
beginning of agriculture (with most of the deforestation 
happening since 1950)12,13 and converted into much less 

vegetated fields. What impacts do these vast human-
induced land cover changes have on the earth’s water 
and energy fluxes?

Graphic: Stefan Schwarzer, UN Environment/GRID-Geneva

Main findings

Trees as water vapour generators
Every tree in the forest is a water fountain, sucking water 
out of the ground by its roots, pumping it through the 
trunk, branches and leaves, releasing the water as water 
vapour through pores in its foliage into the atmosphere. 
On a normal sunny day, a single tree can transpire several 
hundred litres of water, cooling its environment with a 70 
kWh of power output per 100 litres, which represents a 
cooling effect equivalent of two domestic air conditioners 
running for 24 hours14,15. In their billions, the trees create 
giant rivers of water in the air (“flying rivers”) – rivers that 
form clouds and create rainfall hundreds or even 
thousands of kilometres away (Figure 3).16,17

Evapotranspiration as source of precipitation
Globally, 40-60% of the rain falling over land comes 
from moisture generated through upwind, land evapo-
transpiration, mostly by transpiring trees.11,14,18–20 In some 
regions of the world, the share amounts to 70% of the 
rainfall.11 This recycling becomes more dominant further 
inland (Figure 4). 

Tropical evergreen broadleaf forests only occupy about 
10% of the Earth’s land surface, but contribute 22% of 
global evapotranspiration22, highlighting their importance 
for the supra-regional water cycle. The typical distances 
that moisture evaporated from land travels in the 
atmosphere before it falls back to the land are on the order 
of 500–5000 km; the typical time scale ranges from 8-10 
days.23,24 For example, moisture evaporating from the 
Eurasian continent is responsible for 80% of China’s water 
resources.11 The main source of rainfall in the Congo Basin 
is moisture evaporated over East Africa, while in its turn, it 
is a major source of moisture for rainfall in the Sahel.11 The 
state of the West African rainforest is particularly important 



4FORESIGHT
Brief

Early Warning, Emerging Issues and Futures SCIENCE DIVISION

for the flow of the Nile.25 This explains why even in major 
river basins, including the Amazon, Congo and Yangtze, 
precipitation is more strongly influenced by land-use 
change occurring outside than inside the basin. Even in 
several river basins that do not span multiple countries, 
flows were considerably affected by land use in other 
countries.26 

Land-use change and altered heat fluxes
Models show that local changes from forests or 
grasslands to croplands reduce their annual terrestrial 
evapotranspiration by 30-40%.27 On a global scale, 
land-cover change between 1950-2000 reduced annual 
terrestrial evapotranspiration by 4-5% or 3,000-3,500 km3, 
and increased surface water runoff by 6.8%.27,28 Scientists 
found, on the other hand, that increased vegetation has a 
cooling effect that comes from an increased efficiency in 
the vertical movement of heat and water vapor between 
the land surface and atmosphere.29

Changes in atmospheric patterns due to deforestation
Satellite observations suggest that forests have a major 
influence on cloud formation, not only in the tropics, 

but also in temperate zones: disappearing forests can 
lead to significant decreases in local cloud cover and 
thus rainfall.30 Modelling has shown that the extensive 
global deforestation between the 1700s and 1850s 
resulted in a decrease in monsoon rainfall over the 

Indian subcontinent and southeastern China and an 
associated weakening of the Asian summer monsoon 
circulation.31 In the tropics, deep cumulus convection 
has been considerably altered as a result of landscape 
changes (mostly the conversion of forest to crop land). 
This not only affects local precipitation, but also has an 
impact over long distances through processes known 
as “teleconnections”. These teleconnections can have 
impacts at higher latitudes, which significantly alters 
the weather in those regions.10,25,32,33 Even relatively 
small land-cover perturbations in the tropics can lead 
to impacts at higher latitudes34,35, as for example 
connections between the Amazon and northwest 
United States.36 Vanishing forests can also lead to less 
rainfall and longer dry seasons locally as reported for 
example from Rondônia in Brazil37 or Borneo, where it 
was found that the watersheds with the greatest forest 
loss have seen a 15% reduction in rainfall.38 In India, 
patterns of declining rainfall during the Indian monsoon 
matched changing forest cover in India, due to reduced 
evapotranspiration and subsequent decreases in the 
recycled component of precipitation.39 This demonstrates 
the large patterns of water vapour and precipitation 
flows. 

Figure 3: Flying rivers transport water vapor over long distances covered by forests, which play an essential role in the creation of this vapor, acting as a 
massive water pump by absorbing and releasing billions of liters of water in the form of humidity.

Figure 4: Average continental precipitation recycling ratio (1999-2008). The higher the number, the more the precipitation stems from land 
evapotranspiration.11,21

Graphic: Stefan Schwarzer, UN Environment/GRID-Geneva
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temperature (Stefan-Boltzman Law), heat power into the 
atmosphere  (Figure 5, Figure 6). 

Surface temperature differences between these bare 
surfaces and forested areas can, based on a central 
European example, be as much as 20°C on summer 
afternoons (Figure 7).40 In the Indonesian island of 
Sumatra, temperature differences between forest and 
clear-cut land of up to 10°C were found, explained, 
again, by an evaporative cooling effect of forests, which 
outweighs the albedo warming effect generated by the 
darker forested surfaces.41

This highlights the fact that local biophysical processes 
triggered by forest losses can effectively increase 
summer temperatures in all world regions.42 

Historical deforestation has indeed reduced the latent 
heat flux on land and increased sensible heat on the 
ground.43–47 Deforestation has caused significant 
warming in the decade from 2003-2013, of up to 
0.28°C  on average temperature trends in tropical 

Figure 5: Evapotranspiration decreases ground temperature and increases cloud albedo, radiation into space during condensation process, cloud 
building and thus precipitation. Removing vegetation increases temperature at ground level, emit with increasing ground temperature exponentially 
increasing heat energy, creates high pressure zones which hinder the passing of low pressure (and thus moist) air masses, lessen cloud building 
potential and thus reduce precipitation
Graphic: Stefan Schwarzer, UN Environment/GRID-Geneva

Re-radiation of bare soil
Normally, more than 50% of the sun’s solar radiation 
reaching the earth’s surface will be converted by 
evapotranspiration into latent heat, which in turn gets 
transferred into the atmosphere, feeding the precipitation 
cycle, and partially radiating back into space.

On bare surfaces, for example fallow fields, dry meadows 
(in the summer season and after hay harvest), and on 
concrete or asphalt surfaces, the soil will absorb more 
incident solar radiation, heat up, create sensible heat 
and emit, proportional to the fourth power of its absolute 

Figure 6: The same patch of sparse vegetation photographed in the 
infrared spectrum and in the visible spectrum. The bare surface of 
the ground is visibly warmer than the surface of the leaves cooled by 
transpiration.9 
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Figure 7: Surface temperature distribution in a mixed landscape.14,40

regions, and a strong warming of up to 0.32°C in the 
southern temperate regions.48 At the current rate of 
deforestation, tropical forest loss could add 1.5°C to 
global temperatures by 2100, not accounting for other 
human-induced temperature increases.49 

Between 1950 and 2000, surface temperature 
increased globally by 0.3°C due to land cover changes.27 

Perturbations in the surface energy balance generated 
by vegetation change from 2000 to 2015 have led to an 
average increase of 0.23°C in local surface temperature 
where those vegetation changes occurred.50 Mean 
warming due to land cover change may explain 18-40% 
of current global warming trends through the reduction of 
evapotranspiration and in spite of the increase in surface 
albedo.42,51,52

Biogenic aerosols for cloud formation
In addition to the importance of forests for the energy 
fluxes and the generation of precipitation, large forests 
appear to be biogeochemical reactors, in which the 
biosphere and atmospheric photochemistry produce 
nuclei for cloud and precipitation formation, thereby 
sustaining the hydrological cycle.53 Trees produce volatile 
organic compounds and “release” microorganisms – 
bacteria and fungal spores, pollen and other biological 
debris – that live on the leaves and become airborne 
during and after rain in forest ecosystems.54–57 In the 
atmosphere, they form an important part of cloud 
condensation and ice nuclei, in turn impacting cloud 
formation and precipitation.53,54,57–59 The biogenic aerosols 
can further help to raise the freezing temperature by 
creating ice nuclei. Without this phenomena, freezing 
would not occur until clouds reach -15°C or cooler; with 
the aid of these ice nuclei, the process can be achieved at 
temperatures near 0°C, enabling efficient cloud formation 
and generating rain more easily and locally.59–62 

Photo credit: Shutterstock.com

Oceans, a buffer in two directions
A third of anthropogenic CO2 emissions and more than 
90% of the additional anthropogenic heat emitted into 
the atmosphere have been absorbed and buffered by 
the oceans. When talking about global temperature rise, 
we should be aware that we see only ~10% of the total 
effect.63,64

The buffering of CO2 by the oceans runs in the opposite 
direction too: When we retrieve CO2 from the atmosphere 
in order to decrease atmospheric CO2 concentrations, 
the oceans will re-emit CO2 due to the newly created gas 
pressure difference, trying to regain a CO2 concentration 
equilibrium between the atmosphere and the ocean. 
Thus, over shorter time periods, a rapid decrease 
of CO2 in the atmosphere will hardly happen, even if 
we succeeded in a) stopping CO2 emissions and b) 
developing natural or technical CO2 fixation solutions.

Photo credit: Shutterstock.com
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Conclusion

It is important to understand that the carbon, water 
and energy cycles are intimately coupled over land. 
Re-establishing atmospheric and terrestrial moisture 
cycles in vegetation, soils and the atmosphere is of the 
utmost importance for cooling the planet and securing 
precipitation patterns around the world. The drying out of 
the terrestrial landscape is the price of failure.

Stopping deforestation, increasing reforestation and 
implementing agroforestry practices are mandatory if 
we are to successfully avoid a climate catastrophe. A 
systems thinking approach is required to understand and 
use the underlying patterns of rain formation. Bringing 
back the rain to areas such as the Sahel will require more 
than just planting trees in the region; it will demand (re)
building forests from the coast to draw the humid air 
from the ocean into the land.70 

Figure 8: Due to the interrelated nature of forest fires, deforestation, drought and climate change, isolating one of the processes fails to describe the 
complexity of the interconnected whole.65–67

What are the implications for policies?

Vegetation, fertile soils and water retention must be 
recognized as prime regulators of the water, energy and 
carbon cycles. Some of the policy implications are listed 
below:

• Be aware of positive feedback loops: As explained 
above, when forests are cut down, land surfaces and 
the climate become dryer and warmer. This leads to 
conditions which exacerbate the risk of forest and 
vegetation fires which further emit CO2 and cause 
additional deforestation, thus creating a vicious 
circle.68,69 Climate change, deforestation, drought and 
forest fires form a triple-loop of reinforcing feedbacks 
(Figure 8).

• Given the teleconnections of large forest ecosystems, 
they should be considered as providing global goods. 
The REDD+ mechanism developed under UNFCCC 
could, for example, provide a model for recognizing 
and funding the international water and energy 
services provided by these forests. 

• Especially important and sensitive forest regions 
should be protected and managed accordingly.

• It is of the utmost importance to stop deforestation 
and to increase reforestation efforts around the 
world.

• Agricultural practices should focus on soil building, 
year-round soil cover with plants and the use of 
agroforestry methodsiii.
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2
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temperatures

Less
precipitation
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___________________
iii Agroforestry is the integration of trees or shrubs into agricultural fields and 

pastures.

At the same time, increasing soil fertility, water retention 
and soil protection through the practices of the 
regenerative organic movement (see UNEP Foresight 
Briefs 010 and 013), like year-round vegetation cover 
through cover crops and undersow or the implementation 
of agroforestry, represents another important approach 
to feeding the water and energy cycles. Finding ways 
to build additional soil organic matter is one of the keys 
to success for large areas of the world currently under 
cultivation. 

In general terms, we need a paradigm shift, valuing the 
hydrological and climate-cooling effects of vegetation in 
general and forest in particular, alongside their carbon  
sequestration potential. The effects of vegetation – and 
especially tree – cover on climate at local, regional and 
continental scales offer benefits that demand wider 
recognition.14,32,71 

https://wesr.unep.org/media/docs/early_warning/foresight_brief_010.pdf
https://wedocs.unep.org/bitstream/handle/20.500.11822/28453/Foresight013.pdf?sequence=1&isAllowed=y
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